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Abstract

In this paper we discuss questions related to reliability or variability of

estimated parameters in deterministic least squares problems. By viewing the

parameters for the inverse problem as realizations for a random variable we are

able to use standard results from probability theory to formulate a tractable

probabilistic framework to treat this uncertainty. We discuss method stability

and approximate problems and are able to show convergence of solutions of

the approximate problems to those of the original problem. The e�cacy of

our approach is demonstrated in numerical examples involving estimation of

constant parameters in di�erential equations.
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1 Introduction

A standard deterministic inverse problem frequently encountered in both applied

and theoretical literature can be abstractly stated as follows: Given a parameter

dependent dynamical or algebraic system

A(q; u(q)) = F(q) (1)

with states u(q), parameters q and operators (di�erential or algebraic) A, use obser-

vations (possibly incomplete) or data on the states to determine the best parameters

q
� in some admissible set Q so that the solution of equation (1) for q = q

� best de-

scribes the data. For such deterministic problems there is a large literature based on

diverse formulations (least squares, equation error, etc.). For discussions of some

of these see [3]. Once one has \solved" this (by no means trivial) deterministic

problem, it is frequently important to know something about the reliability of the

estimates. One approach entails attaching \error bars" to the estimated parameter

values, much like one does in standard statistical analysis or in scienti�c computa-

tional analysis (using a priori bounds) with �nite discretization techniques (�nite

di�erence, �nite elements, etc) from numerical analysis. In essence we are asking

for measurements of uncertainty (inherent in our methods rather than in our data

collection) related to our best estimates of parameters q. Thus we are led in a

completely natural way to stochastic or probabilistic aspects of estimates from a

deterministic problem solved with deterministic algorithms.

We o�er here ideas for one approach to treatment of variability in parameter

estimation techniques. The approach is based on viewing multiple observations

fûjg
N
j=1 of the state in (1) as observations corresponding to a set of realizations

fqjg
N
j=1 of the parameter q which is now thought of as a speci�c (albeit unknown)

random variable with probability distribution P on Q. The system (1) is accord-

ingly reformulated in terms of the state u = u(P ) depending on the probability

distribution P . The observations fûjg can be averaged so that û = 1

N

PN

j=1 ûj is

an observation for u(P ) and one can then attempt to estimate a best distribution

P
� to �t this data û, for example in some type of least squares �t. Once one ob-

tains P �, its mean � and variance �2 can be used as a best parameter estimate and

measure of reliability, respectively.

In the sections below we give a concrete example of this (using nonlinear pa-

rameter dependent ordinary di�erential equations for the system (1)). We present

a precise formulation of this conceptual approach, show that fundamental results

from probability theory can be used to develop well-posedness results (existence,

continuous dependence, and method stability) along with approximation ideas that

are computationally tractable. We demonstrate feasibility of the resulting algo-

rithms by presenting a summary of numerical �ndings using an example arising in

estimation of e�ectiveness of vaccination policies in a population of susceptibles in

disease prophylactics.
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We believe the underlying philosophy as well as the speci�c formulation are

applicable to and will be useful in a wide class of practical applications.

2 Parameter Estimation in Nonlinear Systems

To demonstrate our ideas, we will examine the estimation of constant parameters

in a system of ordinary di�erential equations. These ideas can be easily extended

to many systems of interest in applications, including systems of partial di�erential

equations with unknown functional parameters (e.g., time and/or spatially depen-

dent coe�cients).

A typical estimation problem employs observations x̂ = fx̂ig
n
i=1 for x(ti), i =

1; 2; : : : ; n, to estimate parameters q 2 Rm in the vector dynamical system

_x(t) = f(t; x(t); q): (2)

Often a least squares formulation is used to �nd a best parameter value q� in some

admissible parameter set Q � Rm. In other words, we attempt to �nd q� 2 Q which

is a minimum for

J(q; x̂) =

nX
i=1

jx(ti; q)� x̂ij
2

over q 2 Q where x(ti; q) is a solution of (2) for a given q 2 Q.

To introduce uncertainty, we view the parameters as realizations for a random

variable and use the data to estimate the probability distribution function (PDF)

for this random variable. Speci�cally, let P(Q) denote the set of probability distri-

butions on Q and treat the data fx̂ig as observations for the expected value

E[x(ti; q)jP ] =

Z
Q

x(ti; q)dP (q) (3)

for a given PDF P 2 P(Q). Note that if P is a discrete PDF with atoms fqjg
M
j=1 � Q

and associated probabilities fpjg, pj � 0,
PM

j=1 pj = 1, then (3) can be written

Z
Q

x(ti; q)dP (q) =

MX
j=1

x(ti; qj)pj:

Regardless of the form of P , the least squares estimation problem can be described

as �nding P � 2 P(Q) to minimize

J(P ) =

nX
i=1

jE[x(ti; q)jP ]� x̂ij
2 (4)
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over P 2 P(Q). To develop theoretical and computational results for this problem,

it is necessary to have a topology on P(Q), continuity of the function P ! J(P )

in this topology, compatible compactness results, and some approximation results

leading to implementable computational algorithms. In order to address these issues

we will introduce the Prohorov metric and summarize some results from Billingsley

[5].

3 The Prohorov Metric in the Space of Probability

Distributions

Let P(Q) be the set of probability measures on the Borel subsets of Q, where Q is

any complete metric space with metric d. For any closed subset F � Q and � > 0,

we de�ne an �-neighborhood of F by

F
� = fq 2 Q : d(~q; q) < �; ~q 2 Fg:

We then de�ne � : P(Q) � P(Q)! R
+ by

�(P1; P2) � inff� > 0 : P1[F ] � P2[F
�] + �; F closed; F � Qg:

The following properties of � are well-known:

(a) � is a metric (called the Prohorov metric) on P(Q);

(b) (P(Q); �) is a complete metric space;

(c) if Q is compact, then (P(Q); �) is a compact metric space.

We would like to understand convergence of Pk ! P in the � metric. Unfortunately,

the Prohorov metric is neither intuitive nor easy to use directly. However, it is well

known that if (Q; d) is a complete metric space and (P(Q); �) is de�ned as above,

then for Pk; P 2 P(Q), the following convergence statements are equivalent:

(i) �(Pk; P )! 0;

(ii)
R
Q
fdPk(q)!

R
Q
fdP (q) for all bounded, uniformly continuous f : Q! R

1;

(iii) Pk[A] ! P [A] for all Borel sets A � Q with P [@A] = 0, where @A denotes

the boundary of A.

The equivalence of (i) and (iii) reveals that convergence in the � metric is equiv-

alent to convergence in distribution. Moreover, if we consider P(Q) � C
�

B(Q) where

CB(Q) denotes the space of bounded, continuous functions on Q with the supre-

mum norm, then (i) and (ii) imply that convergence in the � topology is equivalent
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to weak* convergence in P(Q). For our discussions, we will make critical use of the

equivalence between �(Pk; P )! 0 and

Z
Q

x(t; q)dPk(q)!

Z
Q

x(t; q)dP (q);

which in turn is the same as

E[x(t; q)jPk]! E[x(t; q)jP ]:

This convergence is needed to establish continuity in the � topology of the map

P ! J(P ) =

nX
i=1

jE[x(ti; q)jP ]� x̂ij
2
:

Continuity of this map, along with the compactness of Q, which guarantees com-

pactness of P(Q) in the � metric, is su�cient to establish existence of a solution to

the problem of minimizing (4) over P(Q).

If we assume existence questions are answered, and turn to the task of character-

izing and/or �nding minimizers, we note that P(Q) with the � metric is in general an

in�nite dimensional space because in general Q will be in�nite dimensional. Thus,

to address computational issues one must consider approximation ideas. To do

this we �rst prove a density theorem that will be useful in establishing continuous

dependence of estimates on data as well as in constructing approximation schemes.

There are numerous topologies on P(Q). If we de�ne a W-neighborhood of P

as N�(P ) = fP1 2 P(Q) : P1(Fi) < P (Fi) + �; i = 1; � � � ; k; Fi closed; Fi 2 Sg
for a given � > 0 and �nite set fFig

k
i=1, this induces a topology on P(Q) which

is equivalent to the topology of weak convergence, W (see [5], p. 236). We can

also de�ne a �-neighborhood of P by N �(P ) = fP1 2 P(Q) : �(P; P1) < �g for a

given � > 0. If Q is a separable space, the W topology is equivalent to the topology

induced by the �-neighborhoods. We will be using the equivalence of these two

topologies in the proof of Theorem 3.1. Here N+ are the positive integers, R are

the rational numbers, and �qj is the Dirac measure with atom at qj.

Theorem 3.1 Let Q be a complete, separable metric space with metric d, S be

the class of all Borel subsets of Q and P(Q) be the space of probability measures

on (Q;S). Let Q0 = fqjg
1

j=1 be a countable, dense subset of Q. Then the set of

P 2 P(Q) such that P has �nite support in Q0 and rational masses is dense in

P(Q) in the � metric. That is,

P0(Q) � fP 2 P(Q) : P =

kX
j=1

pj�qj ; k 2 N
+
; qj 2 Q0; pj 2 R; pj � 0;

kX
j=1

pj = 1g

is dense in P(Q) relative to �.
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Proof: Let � > 0 and let P 2 P(Q). Let N �(P ) be a �-neighborhood of P . Since

Q is separable, the W and � topologies are equivalent. Thus there is a � > 0 such

that N�(P ) � N �(P ), where N�(P ) is aW-neighborhood of P of the form described

above with closed sets F1; � � � ; Fk.
Let fBig

M
i=1 be the partition of

Sk

i=1Fi � Q generated by the closed sets

F1; � � � ; Fk. We will assume each Bi is non-empty and so M < 1. Since Q0 is

a dense subset of Q, Bi \Q0 6= ;, for i = 1; � � � ;M .

For i = 1; � � � ;M , select a point xi 2 Bi \ Q0. At each point, xi, place a mass,

bi, which satis�es the following three conditions: i) bi 2 R, ii) 0 � bi � P (Bi), and

iii) jP (Bi) � bij <
�
2M

.

Now if [ki=1Fi 6= Q, select a point xM+1 so that xM+1 2 Q0 \ ([ki=1Fi)
C . If

[ki=1Fi = Q, choose xM+1 so that xM+1 2 Q0 n (fxig
M
i=1). In either case, place at

xM+1 a mass bM+1 � 1�
PM

i=1
bi. Note that bM+1 2 R and 0 � bM+1 � 1.

De�ne P � =
PM+1

i=1 bi�qi . Then P
�(Q) =

PM+1

i=1 bi = 1, and 0 � P
�(A) � 1 for

all A 2S. Thus P � 2 P0(Q) .
De�ne Ki = fj : Fi \ Bj 6= ;; 1 � j � Mg. Note the set Ki has at most M

indices.

Now suppose [ki=1Fi 6= Q. Then for any Fi,

jP �(Fi) � P (Fi)j = jP �(
[
j2Ki

Bj) � P (
[
j2Ki

Bj)j

= j
X
j2Ki

P
�(Bj) �

X
j2Ki

P (Bj)j

= j
X
j2Ki

bj �
X
j2Ki

P (Bj)j

= j
X
j2Ki

[bj � P (Bj)]j

�
X
j2Ki

jbj � P (Bj)j

<

X
j2Ki

�

2M

�
�

2
< �:

Now suppose [ki=1Fi = Q. If xM+1 =2 Fi, the above argument shows jP �(Fi) �
P (Fi)j < �. If xM+1 2 Fi, then
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jP �(Fi) � P (Fi)j = jP �(
[
j2Ki

Bj) � P (
[
j2Ki

Bj)j

= j
X
j2Ki

P
�(Bj)�

X
j2Ki

P (Bj)j

= j
X
j2Ki

bj + bM+1 �
X
j2Ki

P (Bj)j

= j
X
j2Ki

[bj � P (Bj)] + [1�

MX
j=1

bj]j

= j
X
j2Ki

[bj � P (Bj)] + [

MX
j=1

P (Bj)�

MX
j=1

bj]j

= j
X
j2Ki

[bj � P (Bj)] +

MX
j=1

[P (Bj)� bj]j

�
X
j2Ki

jbj � P (Bj)j+

MX
j=1

jP (Bj) � bj j

<

X
j2Ki

�

2M
+

MX
j=1

�

2M

�
�

2
+
�

2
� �:

Thus for all Fi, P
�(Fi) < P (Fi) + �, so P � 2 N�(P ).

Since N�(P ) � N �(P ), P
� 2 N �(P ). By construction P

� 2 P0(Q), so P0(Q) is
dense in P(Q) relative to �. �

Theorem 3.1 can be used as a basis for de�ning a class of approximating sets

to be used in tractable computational methods for the inverse problems de�ned in

Section 2. First de�ne

Qd =

1[
M=1

QM (5)
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where QM = fqMj g
M
j=1; M = 1; 2; � � �, are chosen so that Qd is dense in Q. Note

that Qd is countable. For each positive integer M let

P
M (Q) = fP 2 P(Q) : P =

MX
j=1

pj�qMj
; q

M
j 2 QM ; pj 2 R; pj � 0;

MX
j=1

pj = 1g:

(6)

If we then de�ne

Pd(Q) = [1M=1
P
M (Q); (7)

then by Theorem 3.1 we know Pd(Q) is dense in P(Q), and so we can approximate

any element P 2 P(Q) by a sequence fPMj
g, PMj

2 PMj (Q), such that �(PMj
; P )!

0 as Mj !1.

4 Stability of the Inverse Problem

We now turn to the study of the inverse problem. We return to our original problem

of �nding a solution to

min
P2P(Q)

J(P; x̂) =

nX
i=1

jx(ti; P )� x̂ij
2
: (8)

Given data x̂
k and x̂ such that x̂k ! x̂ as k ! 1 and corresponding solutions

P
�(x̂k) and P

�(x̂) (which in general are sets because there is not necessarily a

unique minimizer of (8)), we say the problem is continuously dependent on the data

(or stable) if dist(P �(x̂k); P �(x̂))! 0 as k !1 (see [3, 4] for detailed discussions

and motivation).

We now de�ne a series of approximate problems. Let PM (Q) be de�ned as in

(6) where Qd is a countable dense subset of Q as de�ned in (5) with QM = fqMj g.
We de�ne the approximate problem as �nding a solution to

min
PM2PM (Q)

J(PM ; x̂) =

nX
i=1

jx(ti; PM)� x̂ij
2
: (9)

Let P �M (x̂) denote the set of solutions for a given x̂. The problems are method stable

(again, see [3, 4] for further discussions) if for any data x̂k and x̂ such that x̂k ! x̂

as k ! 1 we have dist(P �M (x̂k); P �(x̂)) ! 0 as k ! 1 and M ! 1. Note that

this is equivalent to requiring dist(P �M (x̂k); P �M(x̂))! 0 as k!1 uniformly in M .

Theorem 4.1 Let Q be a compact metric space and assume solutions x(t; q) of (2)

are continuous in q on Q. Let P(Q) be the set of all probability measures on Q

and let Qd be a countable dense subset of Q as de�ned in (5) with QM = fqMj g
M
j=1.

De�ne Pd(Q) as in (7) where P
M (Q) is de�ned as in (6). Suppose P

�

M (x̂k) is the set

7



of minimizers for J(P ) over P 2 PM (Q) corresponding to the data fx̂kg and P
�(x̂)

is the set of minimizers over P 2 P(Q) corresponding to fx̂g where x̂
k
, x̂ 2 Rn

are

the observed data such that x̂
k ! x̂. Then dist(P �M (x̂k); P �(x̂))! 0 asM !1 and

x̂
k ! x̂. Thus the solutions depend continuously on the data and the approximate

problems are method stable.

Proof: Since Q is a compact, separable metric space, Qd is dense in Q and Pd(Q)

is the space of all probabilitymeasures with �nite support inQd and rational masses,

it follows from Theorem 3.1 that Pd(Q) is a dense subset of P(Q).

Since Q is compact, (P(Q); �) is compact, where � is the Prohorov metric. Since

q ! x(t; q) is continuous from Q to Rn, whenever PM ! P in P(Q) we have that

lim
M!1

J(PM) = lim
M!1

nX
i=1

jE[x(ti; q)jPM ]� x̂ij
2

=

nX
i=1

jE[x(ti; q)jP ]� x̂ij
2

= J(P ):

(10)

Since PM (Q) is a closed subset of P(Q), PM (Q) is compact in the � topology. More-

over, J is a continuous function on the compact set PM (Q) and thus for a given set

of observations x̂k = fx̂ki g
n
i=1 2 R

n, there exists a (not necessarily unique) mini-

mizer P �kM which is a solution to the problem of minimizing Jk(P ) over P 2 PM (Q)

where

J
k(P ) � J(P; x̂k) �

nX
i=1

jE[x(ti; q)jP ]� x̂
k
i j
2
:

Let fx̂kg be a sequence that converges to some arbitrary x̂ 2 Rn. Let P �M (x̂k)

denote the set of minimizers of Jk(P ) over PM (Q). For k = 1; 2; � � � and M =

1; 2; � � �, let fP �kM g, P �kM 2 P
�

M (x̂k), be any sequence of minimizers in P(Q). By

compactness there exists a convergent subsequence fP
�kj
M`

g such that

lim
M`;kj!1

P
�kj
M`

= ~P 2 P(Q) (11)

in the � metric.

First note that for any PM`
2 PM`(Q)

J
kj (P

�kj
M`

) � J
kj (PM`

): (12)

8



Then by de�nition of Jkj (P
�kj
M`

), (10), and (11)

lim
kj;M`!1

J
kj (P

�kj
M`

) = lim
kj;M`!1

nX
i=1

jE[x(ti; q)jP
�kj
M`

]� x̂
kj
i j

2

=

nX
i=1

jE[x(ti; q)j ~P ]� x̂ij
2

= J( ~P ):

(13)

Let P be any element of P(Q). Since Pd(Q) is dense in P(Q) we can �nd a

sequence fPM`
g, PM`

2 PM` (Q), so that PM`
! P in the � metric as M` ! 1.

Then by de�nition of Jkj (PM`
), and (10)

lim
kj;M`!1

J
kj (PM`

) = lim
kj;M`!1

nX
i=1

jE[x(ti; q)jPM`
]� x̂

kj
i j

2

=

nX
i=1

jE[x(ti; q)jP ]� x̂ij
2

= J(P ):

(14)

So (12), (13), and (14) gives

J( ~P ) � J(P )

for any P 2 P(Q). Hence ~P is a minimizer of J(P ) over P 2 P(Q), i.e., ~P 2 P
�(x̂).

Thus any sequence P �kM in P
�

M (x̂k) has a subsequence P
�kj
M`

that converges to a

~P 2 P
�(x̂). So dist(P �M`

(x̂kj ); P �(x̂))! 0 as M` !1 and kj !1. It follows that

dist(P �M (x̂k); P �(x̂))! 0 as M !1 if x̂k ! x̂. �

In order to address computational issues, we use the family of approximate

minimization problems de�ned above. If Qd, P
M (Q), and Pd(Q) are de�ned as

in Theorem 4.1, we know from Theorem 3.1 we can approximate any P 2 P(Q)
by Pd 2 Pd(Q). Furthermore, from the results established above we also know we

can approximate any P 2 P(Q) by distributions PM 2 P
M (Q). By choosing M

su�ciently large we obtain

Z
Q

x(ti; q) dP (q) �

Z
Q

x(ti; q)

MX
j=1

�qMj
(q) dP (q) =

MX
j=1

x(ti; q
M
j )pj:

Thus we can approximate J(q) by

J
M (p) �

nX
i=1

jx̂i �

MX
j=1

x(ti; q
M
j )pj j

2

9



where p = (p1; p2; � � � ; pM) and
PM

j=1 pj = 1, pj � 0, pj 2 R, 1 � j �M .

If we de�ne

X
M
i = (x(ti; q

M
1
); x(ti; q

M
2
); : : : ; x(ti; q

M
M ))T ; XM = [XM

1
; � � � ; XM

n ]

X̂ = (x̂1; � � � ; x̂n);

then we can write

J
M (p) =

nX
i=1

jx̂i � p �XM
i j2 = jjX̂ � p �XM jj2

2
:

The approximate minimization problem thus reduces to a constrained optimiza-

tion problem for a quadratic cost functional. Such problems are amenable to a

number of standard algorithms.

Thus we see that any solution p must satisfy p � XM = X̂ and that if XM is

nonsingular, p is uniquely determined and depends continuously on the data X̂.

5 Examples

We present a series of examples to illustrate a computational algorithm arising

from the discussions of the previous sections. Each example uses the same system

motivated by a problem in the assessment of the e�ciency of a vaccination program

[6, 2] by using data fx̂ig for the aggregate population x(ti) of vaccinated but not

infected individuals at time ti. The evolution of the population is given by

_x(t) = �qG(t)x(t); x(0) = x0; (15)

where G(t) represents the known rate of exposure to infection, q is the suscepti-

bility to \environmental exposure" (a parameter to be chosen from an admissible

parameter set Q) subsequent to vaccination of the population at time t = 0, and x0
is the known number of individuals initially vaccinated.

All calculations were carried out using MATLAB routines. We let Q = [0; 1] and

de�ne QM = f j�1

M�1
gMj=1. Note Qd = [1M=1

QM is a countable, dense subset of Q.

For a given positive integer M, we would like to �nd a P � that is a solution to (9)

where PM (Q) is de�ned as in (6) with our given QM . The data fx̂ig is simulated

data we generate.

To generate simulated data we start by taking N samples, fqSj g
N
j=1 on q

� from

Q. The time interval T = [0; 1] is discretized by ti =
i
n
, 0 � i � n, where 1

n
= 0:01.

\Data" fx̂ig is generated by �rst solving (15) at each point x(ti; q
S
j ) with G(t) given

by

G(t) = 130�

8<
:

0 0 � t � 0:1
t�0:1
0:8

0:1 < t � 0:9

1 0:9 < t � 1 :

10



Then, to average solutions from all samples, we de�ne xi =
1

N

PN

j=1 x(ti; q
S
j ). Rel-

ative random noise was added to the solutions so that the \data" was given by

x̂i = xi[1 + �i] where the �i are independent Gaussian random variables with mean

zero and variance �2.

In our �rst example, the samples of q� are chosen from a normally distributed

random variable on Q with mean 0:5 and standard deviation 0:1. The following

�gures display the optimal estimated discrete probability densities represented by

p = (p1; � � � ; pM) and the corresponding probability distributions PM =
PM

j=1 pj�qj .

In Figure 1 we present results of the optimization using data that was generated

as described with 0% relative error. In Figure 2 the data was generated with 5%

relative error, and in Figure 3 data was generated with 10% relative error. Note in

each case as M increases the probability distributions are converging in the Prohorov

metric as guaranteed by the theory, while the discrete densities do not converge in

any sense on Q = [0; 1]. In each plot of the probability density, the \x"'s are the

actual distribution of the generated data for q� and in each plot of the probability

distribution, the dashed line is the continuous distribution associated with q
� that

the discrete distributions are attempting to approximate. The optimal distributions

are graphed with piecewise constant solid lines.

In addition to testing the inverse problem on q
� with a Gaussian distribution,

we also carried out the inverse problem with M = 9 and 0% and 5% relative error

for the following q� ( x(ti; q
�) is again represented by a 1�M vector of values and

the distribution for q� is approximated by p = (p1; � � � ; p9)):

� A delta function at 0:5, q� = 0:5, with results presented in Figure 4;

� Two delta functions at 0:25 and 0:75, q�(j) =

�
0:25 0 � j < N=2

0:75 N=2 � j < 1
, with

results in Figure 5;

� Two skewed delta functions at 0:15 and 0:6, q�(j) =

�
0:15 0 � j < N=3

0:6 N=3 � j < 1
,

with results in Figure 6;

� A uniform distribution on [0:25; 0:75], with results in Figure 7;

� A uniform distribution on [0:1; 0:3][ [:55; :75], with results in Figure 8;

� A bimodal Gaussian distribution with one mean at 0:3 and the other at 0:7

and standard deviation 0:06, with results in Figure 9;

� A right skewed distribution with mean 0 and standard deviation 0:2, with

results in Figure 10.

In each example the estimated probability distribution is a reasonable approx-

imation of the continuous distribution, both with no error and with 5% relative

error on the data.
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Figure 1: Approximate probability densities and probability distributions for q�

normally distributed and 0% error on data.
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Figure 2: Approximate probability densities and probability distributions for q�

normally distributed and 5% error on data.
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Figure 3: Approximate probability densities and probability distributions for q�

normally distributed and 10% error on data.
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Figure 4: Approximate probability density and probability distribution for q� = 0:5

with M = 9 and relative errors 0% and 5%.

15



0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

p

q

Prob. Density − rel. error=0%

M=9

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

q

p

Prob. Distribution − rel. error=0%

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

p

q

Prob. Density − rel. error=5%

M=9

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

q

p

Prob. Distribution − rel. error=5%

Figure 5: Approximate probability density and probability distribution for q� two

delta functions with M = 9 and relative errors 0% and 5%.
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Figure 6: Approximate probability density and probability distribution for q� two

skewed delta functions with M = 9 and relative errors 0% and 5%.
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Figure 7: Approximate probability density and probability distribution for q� uni-

formly distributed on [:25; :75] with M = 9 and relative errors 0% and 5%.
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Figure 8: Approximate probability density and probability distribution for q� uni-

formly distributed on [:1; :3] [ [:55; :75] with M = 9 and relative errors 0% and

5%.
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Figure 9: Approximate probability density and probability distribution for q� bi-

normally distributed with mean 0:3 and 0:7 and standard deviation 0:06 for each

with M = 9 and relative errors 0% and 5%.
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Figure 10: Approximate probability density and probability distribution for q� right

skew distributed with mean 0 and standard deviation0:2 with M = 9 and relative

errors 0% and 5%.
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6 Concluding Remarks

In the discussions above we have presented one approach to the quanti�cation and

computational treatment of uncertainty in inverse problems of a least squares for-

mulation. By treating the estimated parameter as a random variable with unknown

distribution, we conceptually reformulate the deterministic parameter estimation

problem into a problem of estimation of a random variable using sampled data

from a dynamical system which depends on the parameter. We use powerful but

basic results from probability theory to develop a theoretical basis for these new

problems. Approximation results along with continuous dependence of estimates

on data and method stability are discussed. To test the ideas we present a series

of numerical examples based on a single model arising in vaccination and suscep-

tibility problems. The computational results presented support the e�cacy of our

approach and illustrate well the theoretical convergence results given in the paper.
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